OFERTA Candidat/a Beca Predoctoral FI

DATA DE PUBLICACIÓ

22/09/2017

DATA LÍMIT PRESENTACIÓ OFERTES

16/10/2017

EMAIL ENVIAMENT CV

DESCRIPCIÓ DE L'OFERTA

L’Institut Català de Recerca del Agua (ICRA) està buscant candidats/es per aplicar a la propera convocatòria de les beques FI dins el marc del projecte SEWAGENE (Ref. CTM2016-75653-R). SEWAGENE investiga l’acumulació, dispersió i eliminació de resistències a antibiòtics en col·lectores d’aigua residual. El candidat/a s’integrarà en un grup d’investigació format per microbiòlegs i enginyers i la seva investigació inclourà microbiologia clàssica, biologia molecular, genòmica i enginyeria de processos.

El treball es desenvoluparà a l’ICRA sota la direcció dels Dr. Carles Borrego i Dr. Oriol Gutiérrez.

ICRA és un referent internacional en la investigació del cicle integral de l’aigua, en matèria de recursos hídrics, qualitat de l’aigua (química, microbiològica, ecològica, etc.), en tecnologies de tractament i en la transferència d’aquest coneixement a la societat i l’empresa.

 

Requisits dels candidats/es:

És necessari estar en possessió d’un títol de màster en Biologia, Biotecnologia, Enginyeria, Ciències de l’Aigua o matèries afins, amb un expedient acadèmic de nota mitjana superior a 2 (escala 1–4) o 7 (escala 1-10). Es valorarà disposar de coneixements en biologia molecular, bioinformàtica i enginyeria de processos.

 

Contacte, informació de la convocatòria i presentació de sol·licituds

Investigadors Responsables:

Dr. Carles Borrego: cborrego@icra.cat

Dr. Oriol Gutiérrez: ogutierrez@icra.cat

Ajuts per a la contractació de personal investigador novell (FI-2018), disponible a la web de l’AGAUR:

http://agaur.gencat.cat/ca/beques-i-ajuts/convocatories-per-temes/Ajuts-per-a-la-formacio-i-contractacio-de-personal-investigador-novell-FI-2018?category=61680f2d-9295-11e5-a40e-005056924a59&temesNom=Recerca%20i%20innovaci%C3%B3

El termini de presentació de sol·licituds és fins el 16 d’Octubre de 2017

 

Informació del projecte SEWAGENE

SEWAGENE: ACCUMULATION, SPREAD AND REMOVAL OF ANTIBIOTIC RESISTANCE IN SEWER SYSTEMS

The World Health Organization has recently recognized antibiotic resistance as one of the three biggest threats to public health in the 21st century. Despite the emergence of antibiotic resistance among microorganisms is unavoidable due to their genetic plasticity, less evident is its significance out of the clinical context. The overuse of antibiotics by humans and their misuse in veterinary, aquaculture and agriculture practices are key factors in the spread of antibiotic resistance into the environment. In urban areas, humans can be considered as the main source of antibiotic residues, antibiotic resistant bacteria (ARB) and resistance genes (ARGs), which are excreted through faeces and collected from individual toilets by sewage systems (or sewers). Sewers consist of an underground network of pipelines, pumping stations, manholes and channels that convey wastewaters to the discharge point, usually a wastewater treatment plant. Although they have traditionally been considered only as transport systems, sewers are in fact hot spots of microbial diversity and activity. Besides this, sewers are the first section of the urban wastewater system and thus the most likely compartment where excreted antibiotic residues may stimulate resistance among microbes and its further accumulation and spread.

Sewer management companies usually apply different chemical treatments to mitigate noxious sulfide and methane emissions derived from microbial activity. Although the effects of these treatments on sewer microbial communities are well known, less information is available about their side-effects on the abundance and spread of ARGs among the sewer microbiota. To fill this gap, SEWAGENE aims to investigate how the sewer resistome is affected by these chemical treatments, assessing to what extent these chemical stressors stimulate the spread of resistance and, specially, if they are effective in their removal. To reach these goals, SEWAGENE will combine controlled treatments using Nitrate and Free Nitrous Acid at different experimental scales (laboratory, pilot plant and real sewers) to assess the diversity, mobilization and removal of the sewer resistome under the different operational conditions. The combination of state-of-the-art analytical chemistry, gene-based molecular techniques and process engineering will generate a complete database of chemical and genetic data that will allow the determination of the best strategy to eliminate resistant bacteria and resistance genes from sewer systems. Results from SEWAGENE will be valuable not only for environmental chemists, microbiologists and engineers interested on side-effects of chemical treatments on sewer microbial communities but also for companies and authorities responsible of urban wastewater management that are facing the critical challenge of operating at the highest treatment standards while adapting their practices to new pollutants and emerging threats.